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Determination of Elastic Constants of Crystals from Diffuse Reflexions of X-rays. 
II. Application to some Cubic Crystals 
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The formulae required to deduce the elastic constants of cubic crystals from observations of diffuse 
reflexions are derived from the general theory. The intensities of the diffuse reflexions corresponding 
to points in reciprocal space distributed along various lines are compared. These lines are always 
taken in pairs which pass through the same reciprocal-lattice point, e.g. 400, and are parallel to 
important crystallographic axes, e.g. [110], [111]. Comparisons of these diffuse intensities lead directly 
to a measurement of ratios of the three elastic constants ctt, ct2, c44, with an accuracy of about 5 %. 
Absolute values can be determined from an absolute measurement of the diffuse intensity, though 
with a lower accuracy. The method was tested using crystals of KC1 and KBr and found to give 
results in agreement with measurements by other methods. It was also applied to NaC103, galena 
PbS, and hexamethylenetetramine. The last crystal was chosen as an example of a soft organic 
crystal which could not easily be studied by other methods, and it is believed to be the first purely 
organic cubic crystal for which the elastic constants have been determined. The results obtained for 
these five crystals were as follows: 

Cll C12 C44 
KBr 3.8 × 10 it 0.60 × 1011 0.64 × 1011 dyne cm. -~ 
KC1 4.3 0.75 0.79 
NaCIO a 4.9 1.5 1.2 
Galena 10.2 3.8 2.5 
Hexamethylenete~ramine 1.5 0.3 0"7 

1. Introduction 

In  a previous paper  ( R a m a c h a n d r a n  & Wooster,  1951) 
(hereafter referred to as I) the  general principles of a 
now method  were described, in which the elastic con- 
s tants  of crystals are derived from measurements  of 
diffuse reflexion. In  this paper  it  is proposed to describe 
the  results of such measurements  for certain cubic 
crystals. Five crystals have  been studied: two alkali 
halides, KC1 and KBr ;  two inorganic compounds,  PbS 
and  NaClOa; and one organic crystal,  hexamethylene-  
te t ramine,  C6Ht2N 4. Of  these, the  elastic constants  of 
KC1 and K B r  are known fairly accurately,  and the pro- 

* Now at the Department of Physics, Indian Institute of 
Science, Bangalore, India. 

sent exper iments  with those crystals were performed to 
test  the  applicabil i ty of the principles described in the  
earlier paper.  The elastic constants  of the  other  three 
materials  were either not  known, or different observers 
had obtained differing results. 

2. Some general formulae 
We m a y  briefly recapi tulate  the  main definitions and 
formulae used in calculating the results. Any  reciprocal- 
latt ice point  of indices hkl is known as the  ' ro lp '  hkl. 
Star t ing from this relp a line having direction ratios 
A, B, C m a y  be drawn,  and this is known as t h e '  rokha '  
[ABC]hkz. The line joining the  ' relp ', hkl, to the  origin 
is known as the  corresponding ' t e l -vec tor ' .  The ratio 
of the intensi ty  of X-rays  diffusely reflected per unit  
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cell per uni t  solid angle in the given direction to tha t  
scattered under  identical  conditions by  a single free 
electron is called the diffuse structure intensi ty.  The 
diffuse structure in tens i ty  of first order, D~, is given by* 

D _ k T  ~" ~---~-] F r [ ~ K [ A B C ] ~ , ,  (1) 

where K[ABC]ara is a funct ion of the elastic constants 
and of the six indices A ,  B ,  C, h, k, 1 of the rekha 
[ABC]~,:t. 

The flux of diffusely reflected X-rays,  Ia, which is 
observed by means of a slit subtending a solid angle ~2 
at  the crystal,  when a flux I 0 is incident,  consists of a 
number  of components.  The main  par t  is Ix, due to 
first-order diffuse reflexions, which varies as 1/R ~ 
along a part icular  rekha. Another  par t  I e, due to second- 
order diffuse reflexions, varies as 1/R; its ratio to I~ is 
given by  

1~ = ½rta k T q e R K , [ A B C ] ~ , / K [ A B C ] ~ , , ,  (2) 

where K'[ABC]~ , z i s  a function analogous to K[ABC]~kr 
and is given by  equat ion (7) of I. A thi rd  component,  
I~, of Ia does not  vary  with R and is due to Compton 
scattering, etc. The component  I1 is related to D~ by  

the formula i1 ~ee~. _ 

Combining (i) and  (3), therefore, K [ A B C ] ~  can be 
determined, and  hence the elastic constants can be 
calculated. 

To determine 11, the  component  due to the first- 
order diffuse reflexions only, the values of I~ for dif- 
ferent R's  along a part icular  rekha are plotted against  
1/R ~, when the intercept  on the Ia axis gives I~ which 
can thus  be eliminated. I~ is e l iminated by using 
equation (2) in which approximate  pre l iminary  values 
of the elastic constants (obtained by  neglecting the 
presence of the second-order diffuse reflexions) are used. 
Fuller  details of the theoretical principles behind this 
procedure are given in I. 

* For the notation, see I. 

In  (1) F ~  is the structure ampl i tude  at  tempera ture  
T and is given in terms of the structure ampli tude,  F ,  by  

F T = F e - M .  (4) 

Hero M = 8~9 sin9 0 
3 A2 (5) 

(Waller & James,  1927), where g2 is the mean-square  
ampl i tude  of vibration.  The above formula is s tr ict ly 
true only for a monatomic  lattice; for a crystal  com- 
posed of more than  one type  of atom, a different value 
of M applies to each atom. Exper iment  has shown tha t  
the value of M does not vary  much  from atom to atom 
(Lonsdale, 1948) so tha t  (4) and (5) can be taken to be 
true also for a crystal  composed of several kinds of 

atoms, but  with ~e s tanding for the mean-square 

ampl i tude  of all the atoms. Values of ~e at  room tem- 
perature (293 ° K.) for a large number  of cubic crystals 
have been given by  Lonsdale (1948). 

3. R e l a t i o n  b e t w e e n  t h e  r e k h a  c o n s t a n t  
K [ A B C ] h ~ z  a n d  t h e  e l a s t i c  c o n s t a n t s  

For cubic crystals there are only throe independent  
elastic constants c n,  c~, caa. P~eferring all direction 
cosines to the  orthogonal cubic axes, the q u a n t i t y  
K[ABC]~, t ,  for which the accurate expressions are (5), 
and (Sa) of I, can be reduced to (Jahn,  1942) 

K[ABC]a~a = [h~{c~, + ca,(Cxl - ca,) (v ~ + w e) 

-1- (e l l  + Cle) (e l l  --  C12 --  2e44 ) yew e} 

+ k~{ch + c~(cn  - c~) (w ~ + u ~) 

+ (Cn +cl~) ( c n -  c l~ -  2c~) w~u ~} 

2 t- 12{C424 3 t- C44(Cll -- C44 ) (U 2 "~- V e) 

-~- (e l l  -[- C12 ) (e l l  --  C12 - -  2C44 ) uev e} 

- 2hk(cl~ + ca~) {c~t + (c n - c1~ - 2c~) w e} uv 

- 2kl(c~e + eta) {c~ + (Cll - c~e - 2eta) u e} vw 

- 21h(c~2 + c~) {c~ + (c~ - cl~ - 2ca~) v ~} wu] 

+ (h ~ + k ~ + 1 ~) [c n e~ + c~(c n + c~e ) 

x (cn - Cl~ - 2c~) (uev ~ + yew ~ + weu 2) 

+ (e l l  "{- 2C12 + C4~) (e l l  --  C12 --  2V44) 2 U2V2W2], 

where ( u , v , w ) = ( A , B , C ) / ~ / ( A e + B ~ + C e ) .  (6) 

Table 1. K values in common use for rekhas [ABC] and relps hkl 

K values for relps having the indices 
A 

[ABC] ()01 110 111 

[100] s~ ½(81 .~_ 8B ) ~(81 ~t- 283) 
[010] s2 ½(s 1 + s~) ½(Sl + 2s~) 
[001] s 1 s~ ½(s 1 + 2s2) 
[ 110] s 2 2s~ ½(s~ + 4s4) 
[ 101 ] s a + s 4 ½(s~. + s a + s4) ½(s~. + 4s4) 
[011] sa + s4 ½(s 2 + s 3 + s4) ½(s~ + 4s4) 
[I10] s2 2s3 ½(s2 + 4s3) 
[ 10i] s3 + s4 ½(s~ + s3 + s4) ½(s2 + 4s3) 
[0il] sa + s4 ½(s~. + sa + s4) ½(s~. + 4s8) 
[ 111 ] s s + 2s 6 2s s + s 6 3ss 
[i11] s 5 + 2s 6 3s6 ½(s5 + 8s6) 
[ 1T1] ss + 2s8 386 ½(86 + 886) 
[YI1] s5 + 2s6 2st + s6 ½(s5 + 8s6) 

hkl 
P281+ (Q~-t- R ~) s~ 
Qesl + (R 2 + pe) s2 
R~sl + (P~ + Q~) s2 
( p  + Q)2 s4 + ( p _  Q)2 s3 + Res~ 
(R + P) 2 s4 + (R--P) 2 sa + Q~s~ 
(Q + R) 2 8 4 "4- (Q - R)* s3 + P~s2 
(p_Q)2 84 + (p+Q)2 8a+R28~ 
(R  -- P)*  s 4 + (R  + P)* s 3 + Q's ,  
( Q - R )  2 s4 + (Q + R)  2 ss + Pes~. 
(P  + Q + R) 2 s 5 + 2(1 -- P Q  - Q R  - R P )  s s 
( - - P + Q + R )  2 ss+ 2(I + P Q - Q R + R P )  s6 
( P -  Q + R) 2 ss + 2(1T PQ + Q R -  RP) s8 
(P + Q -  R) ~ ss + 2(1-  PQ + QR + RP) a6 
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Table 2. K' values in common use for rekhas [ABC] and relps hkl 

[ABC] K ' [ A B C ] h ~  [ABC] 
[100] P~s~ + (Q~ + R ~) s~ [i10] 
[010] Q*s~ -t- (R a -t- P ' )  s] [ 101] 
[001] R's~ + (P'  + Q') s~ [01i] 
[ 110] (P + Q)' s~ + (P - Q)' s~ + R's] [ 111] 
[101] ( R + p ) 4 s ~ + ( R - - P )  ' ~ 4 s~+Q s~ [111] 
[011] (Q + R) ~ s~ + ( Q -  R) ~ s] + P's]  [ IT1] 

[111] 

This expression further reduces when the rokha is 
parallel to a cube axis, a face diagonal or a cube dia- 
gonal. Following Lonsdale (1948), we give in Table 1 
the values of K[ABC]a~ for these special directions. 
In this table, P, Q, R stand for h, lc, l/~/(h~+lc~+F) 
respectively, and the other quantities are 

81 = 1/cn, s2--~ 1/C44 , 

8 3 = 1/(c n - cx~ ), sa = 1/(c u + c~ ÷ 2c4~), 

sa= 1/(cn+2cx2+4c~), so= 1/(c n-cx2+caa ). 

From equation (18) of I we derive the values of K'  
[ABC]a~ given in Table 2. 

4. Expressions for K ratios 

We have next to find the K ratio (I, equation (10)) 

E~ B~C~ =K[AIB  1C1]h~ ~ 

2B~C~.]~ K[A~B~C~]~" 

In general, K[ABC]~ is a homogeneous function (of 
degree - 1) in cry, as may be soon from (6), so that  any 
ratio of the K's is a function of degree zero in the elastic 
constants. Consequently, it is not possible to determine 
the elastic constants absolutely from measurements of 
K ratios. I t  is, however, possible to determine all the 
ratios of elastic constants from such measurements. 
Thus, if there are n independent elastic constants for 
a crystal there will be ( n - 1 )  independent ratios of 
elastic constants and in principle, it is possible to deter- 
mine all these by measuring ( n -  1) K ratios. 

For cubic crystals there are two independent ratios 
of elastic constants, which may be called 'elastic ratios' 
for convenience, namely, 

X1 = C12/Cll and X2 =c~4/cn. 
The K ratios of cubic crystals should all be expressible 
in terms of X~ and X~. 

With cubic crystals, it is generally possible to obtain 
all the necessary data from two or three relps taken 
from among the various orders of h00, hhO and hhh. 
Therefore, the various K ratios that  apply to these relps 
have been calculated and are given in Table 3. There 
are, of course, various possible ways of choosing the 
independent K ratios, but preference has been given to 
those involving the rokha lying along the rel-vector for 
each particular relp. This is done because experience 
has shown that measurements can always be made for 
this rekha. 

In principle, the measurement of two K ratios is 
sufficient to determine X~ and X~; but in practice it is 

Ac4 

K'[ABC]hk ~ 
( p _  Q)4 s ~ + ( P + Q )  ~ s ~ + R  ~ ~sz ~ 
(R - P)~ s~ + (R + P)~ s~ + Q~s~ 
( Q - B )  ~ s~-F(Q+R) ~ s a + P  ~ asz ~" 
(P + Q + B) '  s~ + 4( 1 - PQ - QR - RP)  ~ s] 
( - P + Q + R )  ~ s~+ 4(1 + P Q - Q R + B P )  ~ s~ 
(P- -Q-F B) ~ s~+4(I  + P Q + Q R - R P )  ~ s~ 
(P +Q--R) ~ s~+ 4 ( 1 - P Q + Q R + R P f  s~ 

advisable to check the observation by additional mea- 
surements. The calculation of X1 and X2 from the values 
of K ratios requires, in general, the solution of two simul- 
taneous quadratic equations. Since a large number of 
such equations had to be solved during the investigation, 
graphical methods were evolved for this purpose. These 
could be made sufficiently accurate, since the experi- 
mental data were accurate only to about 5 %. 

Table 3. The evaluation of K ratios in terms of X1 and X2 

  olo 7 = 1  
O01.Joo~ X~ 

E el1-] = 2(1+x~1 
O-~Jooz (l--X1) ( I+xI+2X~) 

E O01~ I+XI+2Xz 
]-i-O_l hh0 = 2X~ 

E 0107 =<l+x,) (1+xl+2x~) 
1 l O J  hho 4X~. 

I IT0~ 1 + X , + 2 X 2  
1 1 0 J  hho 1 - -  X1 

E l11~ 3 (1+X~ + 2X9.)(1 +2X,) 
1--~ Jhh o =2 (I + 2XI + 4X2) (I --XI+X2) 

E l10"] = (1+ 2Xl+4X2)(1 +X1 + 6X~.) 
I I l J ~  9X~(I + XI + 2X2) 

l lll-] I 8 (I+2xI+4X2) 
]-~-~Jhhh = 9 + 9 ( l - - x ,  +Xg. ) 

E O01~ (2 +X~)(I +2X, +4X2) 
H-lJhh~ = 9X~ 

A sot of nine charts, one for each K ratio listed in 
Table 3, which would give the value of the K ratio 
corresponding to any combination of X1 and X2, was 
prepared. An examination of the literature showed that 
X2 is in general less than 0.6, while X1 is theoretically 
limited to the range -0"5~<Xx~< 1.0. Therefore the 
charts included the range of values 0<X2< 1-0 and 
- 0 . 5  <X1 < 1.0. Two illustrative charts are shown in 
Figs. 1 and 2.* In those, X1 and X2 form the x and y co- 
ordinates, and curves are drawn at equal intervals 
of 0.05 for loglo[A1B1C1/A2B2C2]hkv The reason for 
choosing the logarithm is that, on the logarithmic scale, 
equal increments correspond to successive multiplica- 
tions by a constant factor. An increment of 0.05 corre- 
sponds to an increase of 12.5 %. Since it is possible to 
read to a fifth of the distance between successive curves 
with ease, an accuracy of 2.5 % can be obtained, which 
is within the limits of experimental error. 

* The authors wish to acknowledge the assistance of the 
Mathematical Laboratory of this University in computing 
three of the nine charts. 

~8 
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For actual use the charts are prinbed on transparent  
film, so tha t  they  can be suporposed on one another. 
Thus, if the values of the K ratios are known, then, by  

5. Elastic constants of KBr and KC1 

The crystals of KBr and KC1 studied were synthetic 
and wore made available to the authors through the 
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Fig. 2. 
Figs. 1, 2. Curves showing the variation of K ratios with X, and X=. 
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superposing the appropriate charts, the values of X1 
and X2 corresponding to the point of intersection of 
the two curves can be road off directly. Recalculation 
of the K-ratios from the values of X1 and X2 thus found 
has shown that  the method is sufficiently accurate. 
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i i i i 
0 0"1 0.2 
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Fig. 8. 
Figs. 3-8. Variation of intensity of diffuse flux with distance from the nearest reciprocal-lattice point for 

various rekhas in potassium bromide. 

kindness of Dr E. Burstein of the Naval Research 
Laboratory, Washington. They were in the form of 
cleavage blocks and faces were ground on them parallel 
to (110); consequently, the relps h00 and hh0 could be 
studied. Measurements with those crystals wore made 
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with the idea of verifying the validity of the method; 
the details of the analysis are therefore given. 

Elastic constant~ of KBr 

Of the two crystals, KBr is more suited for the pur- 
pose of testing the method, since it gives more intense 
diffuse reflexions. The following sections of the various 
relps were investigated for this crystal: 

004: section ± [100] 006: section ± [100] 

220: (a) section ± [110] 440: (a) section ± [110] 

(b) section ± [001] (b) section ± [001] 

Although the crystal was reasonably good, it was not 
sufficiently perfect for rekhas at  right angles to the 
rel-vector to be studied satisfactorily. The results of 
the experiments are shown in Figs. 3-8. In these, the 
values of the diffuse flux Ia (after making the divergence 
and other corrections) are plotted against 1/R 2. In 
making these measurements, the methods described in 
I were adopted, including the technique of varying slit- 
heights described in §5.3; but all the measurements 
have been reduced to a standard size of 5 ram3 for the 
observing slit and are given in counts per minute. 
Since the distance of the slit from the crystal is 7.2 mm., 
the solid angle ~ is 9.65 x 10 -4. The distance R is mea- 
sured in cm. on the i -¢  charts described in I, which have 
boon drawn to the scale of 1/A = 50 cm. Since CuKa has 
been invariably used in the investigation this gives 
1 A. -1 = 76.95 cm. on the charts. 

I t  will be noticed tha t  in all the figures the experi- 
mental points lie on straight lines passing through a 
common point on the axis of ordinates, as required by 
theory. Subtracting the value Ic (corresponding to the 
intercept on the axis of ordinates, we have the values 
of 11 + 12 given in Table 4. The second-order corrections 
(I~) are calculated by using equation (2) with the 
following elastic constants: 

c n = 3.46 x 10 n, c12 = 0.56 x 10 n,  

c44 = 0.505 x 10 n dyne cm.-% 

which are the mean of the published data  due to Hun- 
tington (1947) and Galt (1948). 

As the magnitude of I2 is small, the actual values of 
the elastic constants used to evaluate them are not 
important.  In fact, in the other crystals tha t  were 
studied, the preliminary values for calculating 12 were 
themselves obtained from the measured data. Plots 
were made o f / ,  against 1/R 2, and the ratios of the slopes 
of the various lines give the magnitudes of the K ratios, 
which are: 

r O l l 7  = 1.86 for 004~ mean= l'~ L Joo  =  .87 for 006 t 1"865,  
011 

l°gl°Eo-6~] oo, =0"270; ] (A) 
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rlll7 = 1"49 for 2201 } 
L]-~-0Jhho = 1.51 for 440] mean= 1.50, 

, [-1117 (B) 
mg~0Ll~Jhho =0"175;  0,01 / } 

110J hho = 2-57 for 440) mean = 2.555, 

Io ['010-] (C) 
gloLiT6jh~o =0"410. 

Using the charts of X~ and g2, we have 

Xt X~ 
F r o m  (A) and (C) 0.16 0.17 
F r o m  (B) and (C) 0.16 0.17 

Mean 0.16 0.17 

Having thus determined the elastic ratios, the elastic 
constants may be determined absolutely, using (1) 
and (3). The relevant constants are taken from standard 
tables, while the temperature factor M is calculated 
from (5) with the value of ~2 from Lonsdalo (1948). 
Table 5 gives the values of the various quantities used 
in the calculation, as well as tha t  of K[ABC]ak~ cal- 
culated from it. Combining those with the values of 
X~ and X2, the values of Cll in the last column are 
obtained. 

The mean value of c n is 3.77 x I0 n dyne cm. -2, so 
that  we have finally for KBr 

c n = 3"8 x 10 n, c12- 0.60 × I0 n, 

c44 = 0.64 × I0 n dyne cm. -2. 

Elastic constants of KC1 

With KC1 the elastic constants were deduced purely 
from measurements of diffuse reflexions. Since the 
experiments with KBr showed tha t  relps which be- 
longed to different orders of reflexion from the same 
lattice places gave concordant results, only one relp 
of each type was studied in the case of KC1. The most 
convenient ones to s tudy were 004 and 440. In  neither 
case was the surface good enough for rekhas at  right 
angles to the rel-vector to be investigated. However, 
the following rokhas wore studied in each section: 

Rekhas [001]004 and [011]oo, 
in section ± [100] of relp 004; 

Rokhas [110144o and [111144 o 
in section ± [110] of relp 440; 

Rekhas [110144 o and [010144o 
in section ± [001] of relp 440. 

Without correcting for the second-order diffuse scat- 
toring, the following preliminary values were found for 
the elastic constants: 

c n = 3.85 x I0 n,  cl ,  = 0.72 x I0 n,  

c44 = 0.67 x I0 n dyne cm. -*. 

The second-order corrections calculated using those 
preliminary values, as well as the corrected values of 

~8-~ 
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T a b l e  4. Experimental  results for  K B r  giving the diffuse f l ux  as a funct ion  of the distance f rom the relp 

Relp 440; section I [ 110]; I, = 20 

[ABC]n,~ = [110144o [111144o 
A A 

1 ]R 2 Ix + I2 I2 I x I x R* Ix + I2 Is Ix Ix R ~ 
0"155 130 8.0 122 790 197 9"0 188 1210 
0.380 336 12.0 324 850 496 14"0 482 1270 
0"592 503 15"0 488 825 757 17"5 739"5 1250 

820 1240 
(mean) (mean) 

Relp 220; sect ion I [ l I0 ] ;  I o =  18 

[ABC]n~z = [110122o 
,z 

1/R 2 Ix + I2 Is Ix 
0.093 82 1.5 80.5 
0.238 218 2.5 215-5 
0.368 327 3.0 324 

[111]no 

Ix R2 Ix + Is I2 Ix Ix R t 
865 122 2"0 120 1290 
905 313 3"0 310 1300 
880 501 3"5 497"5 1350 

885 1315 
(mean) (mean) 

Relp 440; sect ion I [001]; I o = 2 0  

[ABC]h,z = [ 110144o 
2, 

I/R 2 Ix + 12 I ,  11 
0-155 93 5.5 87.5 
0"380 231 8.5 222.5 
0.592 351 10.5 340.5 

[010144o 

I x R s I x + Is  I t  I1 Ix R 2 

565 254 30 224 1445 
585 611 48 563 1490 
575 938 58 880 1490 

575 1475 
(mean) (mean) 

Relp 220; sect ion _l_ [001];/ '@=20 

[ABC]h~z = [ 110122o 
A 

1JR 2 I x + Is Is Ix 
0"093 39 1'0 38 
0"163 68 1"0 67 
0"238 98 1"0 97 
0.368 151 1.5 149.5 

[010122o 
A 

I1R ~ Ix + I t  I t 11 I x R" 

410 103 4 99 1035 
410 170 5 165 1015 
405 258 6 252 1060 
410 391 8 383 1040 

410 1040 
(mean) (mean) 

Relp 004; sect ion I [100]; I c = 2 0  

[ABC]hkz = [0011oo4 
A 

1]R S I x + 12 I~ I x 
0.111 72 2 70 
0.285 185 3 182 
0.415 277 3.5 273.5 

r 

1/R 2 11 + 12 
0.080 19 
0"151 36 
0.208 49.5 

[011]oo, 

I1R S 11 + I ,  I t 11 11 R t 

630 127'5 3 124"5 1120 
640 349 4"5 344"5 1210 
660 518 7 511 1260 

645 1195 
(mean) (mean) 

Relp 006; sect ion _1_ [100]; I ¢ = 2 2  

[ABC]hkt = [001 ]006 [011 ]oo, 
A. 2, 

Is Ix lx R ~ Ix + It It Ix 11 R S 
1 18 225 36 2-5 33.5 420 
1"5 34.5 230 67 3.5 63.5 420 
2 47.5 225 91 3.5 87.5 420 

227 420 
(mean) (mean) 

[ABC]hkz 
[001]oo, 
[0011oo6 
[110]$2o 
[110144o 

T a b l e  5. Data involved in the absolute calculation of c n for  K B r  

K[ABCJhk z c n x 10 -11 
IxR 2 I o x 10 -e .Fff, q (~ x 10 t6 x 1012 (dyne cm. -2) 

645 185 115.2 46"7 5"54 2"80 3"57 
225 100 73"2 70"0 4'42 2"53 3-95 
410 110 138"0 33"1 6"56 3"49 3-80 
575 165 80"3 66"2 4"48 3"52 3"77 
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I i, are  shown  in Table  6. Again,  i t  will be no t iced  t h a t  
I i  R2 is n e a r l y  c o n s t a n t  for each rekha .  I n  pa r t i cu la r ,  
for the  r e k h a  [110]440, t he  two i n d e p e n d e n t  measure-  
men t s  made  in different  sect ions agree wi th in  the  l imi ts  
of accu racy  of the  de te rmina t ions .  

F r o m  the  K ra t ios  ob ta ined  f rom these  measu remen t s ,  
the  m e a n  values  of X1 a n d  X~ deduced  were X1=0.175,  
X2=0"185. Us ing  these  a n d  the  o ther  d a t a  shown in 
Table  7, the  values  of K[ABC]hla a n d  eli were ca lcula ted .  
Thus ,  t he  final values  of the  elast ic  cons tan t s  of KC1 are:  

c i i - -4 .3  × 10 li, ci2 = 0.75 × 10 ii, 

c44 = 0.79 × 10 i i  d y n e  cm. -2. 

Rev iewing  the  expe r imen ta l  resul ts  for K B r  and  KC1, 
the  fol lowing r emarks  m a y  be made.  Measuremen t s  
made  wi th  different  relps in t he  case of K B r  lead to 
values  of K ra t ios  in reasonable  ag reemen t  w i th  one 
ano ther .  S imi lar ly ,  w i th  bo th  KC1 and  K B r ,  the  
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abso lu te  values  of cil ca lcu la ted  f rom different  relps 
agree to  w i t h i n  10 °/o, which  is w i th in  t he  l imi t s  of 
e x p e r i m e n t a l  error.  The  values  of  elast ic  cons t an t s  
d e t e r m i n e d  here  are compared  w i th  those  ob t a ined  b y  
o ther  me thods  in  Tables  8 and  9, f rom which  i t  will  be 
seen t h a t  t h e y  are in  reasonable  agreement .  I n  fact ,  t he  
difference be tween  the  new values  a n d  those  o b t a i n e d  
b y  u l t rasonic  me thods  is less t h a n  t h a t  be tween  s ta t ic  
a n d  u l t rasonic  measu remen t s .  

6. E las t i c  c o n s t a n t s  o f  s o d i u m  c h l o r a t e  

The  elast ic  cons tan t s  of sodium chlora te  were first  
measured  b y  Voigt  (1910), who ob t a ined  a nega t ive  
va lue  for C~s. However ,  recen t  m e a s u r e m e n t s  of Mason 
(1946) and  of B h a g a v a n t a m  & S u r y a n a r a y a n a  (1947) 
do no t  confirm the  resul ts  of Voigt ,  a l t h o u g h  t h e y  are 
in  fair  ag reemen t  wi th  each other .  The  elast ic cons tan t s  
of sod ium chlora te  wore therefore  measured  b y  the  now 

Table  6. Experimental results for KC1 giving the diffuse f lux as a function of the distance from the relp 

RoIp 004; section ± [100]; Ic= 16 
[ABO]akz = [00 1 ]004 

.__.d~ 
f ~ t 

R I/Ra I~ I1 I1R 2 I~ 
3"00 0.111 0"5 19"5 175 1.0 
2.25 0.197 0.5 33"0 170 1.5 
1.80 0.308 1.0 53"5 170 1-5 

172 
(mean) 

Relp 440; section ± [ l i0] ;  I s=  12 

[ABO]hk~ = [110144o 
A 

t • • 

R 1/R 2 I2 I 1 Ii R2 Ia 
3"60 0"077 1"0 13"0 175 1"0 
2"71 0"136 1"5 22"5 165 1"5 
2"18 0"211 1"5 34"0 160 2'0 

165 
(mean) 

Relp440; section_l_[001];Io= 12 

[0111oo4 
A 

I 1 I iR  ~ 
37.0 335 
63.5 320 
99.5 320 

325 
(mean) 

[ 111144o 
,k 

I1 I1R 2 
20.0 260 
32.5 240 
52.0 245 

250 
(mean) 

[ABO]h~ = [110144o [010144o 

R 1/R 2 ' 12 l l  I1R ~ • I~ I1 I1R ~ " 
3"60 0"077 1"0 12"0 155 5"5 29"5 385 
2.71 0.136 1.5 20.0 150 6.5 51.5 380 
2.18 0.211 2.0 36.0 170 8.5 83.5 395 

160 385 
(mean) (mean) 

Table  7. Data involved in the absolute calculation of Cll for KC1 

K[ABC]hk~ 
[ABC]h~z I iR  2 I 0 x 10 -6 q F r e2x 102~ x 10 lz 
[001 ]004 172 110 49.1 64.7 5" 36 2.28 
[1101440 163 97 69.4 44.3 4.42 3.09 

c~l x 10 -11 
(dyne cm. -2) 

4.39 
4.18 

(Dyne cm. -2) 
cll x 10 -11 
C l ~  X 1 0  - 1 1  

c44 x 10 -1~ 

Table  8. Elastic constants of K B r  Table  9. Elastic constants of KC1 

Diffuse Diffuse 
reflexion reflexion 

(Ramachan- Static (Ramachan- Static 
dran & (Bridgman, Ultrasonic dran & (Bridgman, 

Wooster) 1924) (Galt, 1948) (Dyne cm. -2) Wooster) 1924) 
3.8 3.33 3.46 ell × 10 -11 4.3 3.70 
0"60 0"58 0'58 {~12 x 10 -11 0"75 0"81 
0.64 0.62 0"505 c44 × 10 -11 0.79 0"79 

Ultrasonic 
(Galt, 1948) 

3.98 
0.62 
0.625 
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method,  so as to decide between the  two sets of dis- 
crepant  values. Garrido (1948) has described the results 
of a photographic investigation of the  diffuse reflexions 
given by  NaCIO 3. Measurements made by  the  authors  
do not  confirm the shapes of isodiffusion surfaces 
plotted by  Garrido, bu t  they  are in agreement  with the  
calculations from the elastic constants  of Mason or of 
B h a g a v a n t a m  & Suryana rayana  (Ramachandran  & 
Wooster, 1950). 

The crystals studied were grown from a sa tura ted  
solution in water.  A large number  of crystals of size 
more t han  1 cm. were obtained. They were found to be 
exceedingly good, the  mosaic spread being very  small. 
I n  fact,  this was the  only substance for which rekhas  a t  
r ight  angles to the  rel-veetors could be measured with 
accuracy.  

The s t ructure  of NaCIO 8 has been determined by  
Zachariasen (1929). The best relps to s tudy are 006 and 
333. For  the former a na tura l  (001) face was used, and 
for the la t ter  a ground and etched (111) face was em- 
ployed. The calculations follow the procedure in the 
previous cases, except for the value of F T . In  this case 
it was obtained using the  tables of Zachariasen (1929), 
who has given the values of the atomic s t ructure  factor  
fT  a t  room tempera ture  for Na  +, C1 +5 and 0 -9. The 
second-order corrections were calculated with the  
prel iminary values 

c n = 4.3 × 10 n,  Cl~ = 1.5 × 1011, 

c44 = 1.0 × 1011 dynes cm. -~, 

deduced from the measurements  directly. The values of 
I1R ~ for the  different rekhas and the  corresponding 
K ratios are summarized in Table 10. The K ratios are, 
therefore, 

r0 l 7 r0 0] 7 
Lb-0]2ooo=2.10, Lb-fi_Joo=3.68, Li-~I~= 1.88, 

001 ass=2"58 and Ll l l_ jass=2.37 .  

F rom these, the mean values of X1 and  X~ are deduced 
to be X1=0.31, X9=0.25. 

The relevant  da ta  for the  absolute calculation of the  
elastic constants  are shown in Table 11. 

7. Elastic constants of  galena 

The elastic constants  of galena (PbS) were first measured 
by  B h a g a v a n t a m  & Bhimasenachar  (1944), who ob- 
ta ined the values 

c n = 2.65 × 101~, c12 = 6.99 × 1011, 

c44 = 4.47 × 1011 dyne cm.-L 

However,  as shown by  Hea rmon  (1946), these lead to 
a negat ive value for Young's  modulus along a cube 
axis (sn), which is physically not  reasonable. Bhaga-  
v a n t a m  (1946) has more recently published another  set 
of values for the  elastic constants,  viz. 

cn = 8.69 × 1011, c12 = 4.01 × 1011, 

ca4 = 4.42 × 10 n dyne cm.-% 

As a result of some prel iminary experiments  designed 
to test  those revised data ,  it was found t h a t  the  measure- 
ments  of diffuse reflexions did not  agree with them.  
Consequently, galena was studied in greater  detail.  

Two faces were studied, one a cubic cleavage face and 
the  other a na tu ra l  rhombic dodecahedral  face. The 
former was remarkab ly  good, the  haft-width of mosaic 
spread as measured with a plane crystal  monochromator  
of fluorspar being only 5' of arc. The other  crystal  had  
a haft-width of about  20' of arc. The re levant  d a t a  for 
this substance, as well as the exper imental  results, are 
shown in Tables 13 and 14. Only the final results are 
shown, the  calculations having been made  in exac t ly  
the  same manner  as for K B r  and KC1. The pre l iminary 
values of elastic constants  were 

c~1-- 9.0 × 1011, c1~- 3.2 × 10 n,  

c44 -- 2.5 × 1011 dyne cm. -2. 

Table 10. Experimental results for :NaClO a giving the 
diffuse f lux 11 as a function of the distance from the 
relp along certain rekhas 

Relp and section 
006, ± [100] 

333, _1_ [1T0] 

Rekha I1R~ 
[0011oo6 80 
[011]oo6 168 
[010]oo6 294 
[ l l l ]sss  131 
[ 1101868 246 
[001]6as 338 
[llIJs.~ s 300 

Table 11. Data involved in the absolute calculation of c n for NaClOs 

K[ABCJhk~ c11 × 10-11 
[ABO]ak z I1R~ I o x 10 -e q F~ ~2 x 10 ~6 x 1013 (dyne cm. -2) 
[O01]ooo 80 97"5 70"3 30"9 4"42 1"87 5"35 
~lll]3as 131 101 60.9 37.5 4.66 2.56 4.46 

The mean  value of cll is 4"90 x 1011 dyne cm. -~, so 
tha t  the  elastic constants of sodium chlorate as mea- 
sured by  the  present method are those shown in Table 
12, where they  are compared with the  measurements  of 
the previous workers. The new measurements  agree 
reasonably well with the  values of B h a g a v a n t a m  & 
S u r y a n a r a y a n a  and of Mason, bu t  not  with those of 
Voigt. Thus the new method confirms the  determina- 
tions of the  recent workers. 

Table 12. Elastic constants of NaCIO a 

(Dyne cm. -~) R. & W. B. &. S. M. V. 
cll x 10 -11 4.9 5.09 4-90 6.19 
cla x 10 -11 1.5 1.55 1.45 -- 2.09 
c44 x 10 -11 1.2 1.18 1.18 1.20 

R. & W. = Ramachandran & Wooster; B. & S. =Bhagavan- 
tam & Suryanarayana (1947); l~I.-----1VIason (1946); V.fVoigt  
(191o). 
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Table 13. Experimental results for galena giving the 
diffuse flux 11 as a ,function of the distance from the 
relp along certain rekhas 

Relp  a n d  sect ion R e k h a  I1R 2 

004, _L [100] [0011004 191 
[011]004 399 

440, _l_ [ l i 0 ]  [1101440 196 
[111144o 359 

440, _L [001] [1101440 198 
[010144o 465 

°117 1-1117 I-°I°7 =2"36. 
001joo4=2"09,  L l10 /44o=  1.82, /110_J44 ° 

(1939), the mean value 4.28 being used for ~zip. The 
structure amplitudes _F T for the two reflexions 440 and 
222 are obtained from the measurements of the two 
groups of workers mentioned above. The experimental 
values are used, as they represent F T at room tem- 
perature. They are 

(FT)4a0 -- 22"0 (mean of 23.1 of Wyckoff & Corey 
and 21.0 of Brill et al.), 

(FT)9~9 =42.3 (measurement of Wyckoff & Corey). 

Some factors had to be considered for hexamine, 
which were not important  with the other crystals 

Table 14. Data involved in the absolute calculation of c n for galena 

K[ABC]hkt clt x 10 - n  
[ABC]hk ~ I t R  ~ I o x 10 -6 q F r  E 2 X 1026 × 10 TM (dyne cm. -2) 

[001]o04 191 92 51 "5 240 5"23 1 "04 9"61 
[1101440 197 97 72'9 182 4"43 1'00 10"75 

I t  may be noticed that ,  just as with KC1, the two 
independent measurements for the rekha [1101440 agree 
in giving very nearly the same value for the slope, viz. 
196 and 198. From the data in Table 13 the mean values 
of Xt and X2 are found to be 

XI= 0.38, X2 = 0.25. 

Thus, the elastic constants of galena are 

c n = 10.2 x 1011, c12 = 3.8 x 1011, 

c44 = 2.5 × 1011 dyne cm. -~. 

I t  may be remarked tha t  these lead to the value 
5.9 x l0 n dyne cm. -e for the bulk modulus, which is in 
reasonable agreement with the value 5.13×1011 
dyne cm. -~ deduced from the compressibility data of 
Madelung & Fuchs (1921). 

8. Elastic  constants  o f  hexamethylenete tramine  

As far as is known, elastic constants have not been 
measured previously for any purely organic cubic 
crystal. Hexamethylenetetramine is a crystal of this 
type, whose structure has been investigated in great 
detail (Wyckoff & Corey, 1934; Brill, Grimm, Hermann 
& Peters, 1939). Crystals of this substance, which will be 
called briefly 'hexamine ', were grown from a saturated 
solution in methylated spirit, by gradually lowering its 
temperature in a thermostat.  The crystals, of dimen- 
sions of about a centimetre, were of rhombic dodeca- 
hedral form {ll0} and were reasonably perfect, so that  
they could be used for the present study. The relps 
investigated were 440 using a natural  ( l l0)  face and 
222 using a ground (111) face. 

The procedure followed was similar to that  for the 
previous substances. The absorption coefficient for 
Cu Ka  is obtained from the measurements of Brill et al. 

studied. Since the absorption coefficient is low, the 
X-ray beam penetrated appreciably into the crystal. 
As a result of this, it was not possible to make measure- 
ments as close to the Bragg setting as with other 
crystals. Thus, there was a greater possibility of dis- 
persion effects coming into the measurements, which 
were, however, neglected. The second factor was the 
Compton scattering. As compared with values of 10- 
20 counts/min, with the previous crystals, the constant 
contribution I c to the diffuse flux was of the order of 
100 counts/min, with hexamine, because of the fact 
that  it is composed of elements of low atomic number. 
However, this large 'background '  did not stand in the 
way of the accuracy of the measurements, since the 
diffuse reflexions due to acoustical waves were also quite 
large, because of the low elastic constants. 

The preliminary values of the elastic constants were 

c n = 1.7 x 1011, c12 = 0.1 x 1011, 

c4a = 0.6 x 1011 dyne cm. -2. 

The experimental results are summarized in Tables 15 
and 16. 

Table 15. Experimental results for hexamethylenetetra- 
mine giving the diffuse flux I 1 as a function of the 
distance from the relp along certain rekhas 

Relp  and  sect ion R e k h a  I1R 2 

440, _L [ 1TO] [ 110]44o 1300 
[ 111144o 1940 

440, _L [001] [110144o 1280 
[010144o 2170 

222, _L [ l I0 ]  [ l l l]2zz 1865 
[1101222 2750 
[0011222 3845 

[ABO]a~z 
[ 11 0]440 
[ 11 1 ]hi 

Table 16. Data involved in the absolute calculation of clt for hexamethylenetetramine 
K[ABC]ak~ 

I x R '  I o x 10 -e q El. (2x 1020 x 10 lz 

1290 94 61.8 22.0 4.62 6.54 
1865 70 38.0 42.3 6"20 6.14 

eu  × 10-11 
(dyne  em. -z) 

1.47 
1"54 
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The mean values of X1 and X2 from the K ratios 
obtained from Table 15 are 

X~=0.21, Xe=0.44; 

and hence the elastic constants of hexamine are 

Cll : 1.5 × 1011, Cxz = 0"3 x 1011, 

c44 = 0.7 x 1011 dyne cm. -2. 

I t  may be mentioned tha t  the absolute values of 
elastic constants are not very reliable, because, they 
depend on the value of/x, the linear absorption coeffi- 
cient. The value used here for #/p is 4.28, experimentally 
found by Brill et al. (1939), who state that  this is 
appreciably lower than the value 6.23 calculated from 
the mass absorption coefficients of carbon, hydrogen 
and nitrogen. If  the latter were used, then all the elastic 
constants would be reduced to about two-thirds of the 
values given above. The magnitudes X1 and X~ are, 
however, expected to be accurate to + 0.05. 

9. Concluding remarks 
(a) Application to other cubic and non.cubic crystals 

I t  is believed tha t  the experimental procedure 
described in this paper can be employed for most cubic 
crystals. I t  is possible in general to find one or two 
reflexions from among the various orders of 00l, hhO and 
hhh which satisfy the requirements mentioned in I, § 10, 
but  ff this is not possible, in any particular case, then 
the general formula, equation (6) of this paper, can be 
used to calculate rekha constants and K ratios for other 
relps. 

Essentially, no new principles have to be taken into 
account in extending the method to crystals of lower 
symmetry.  Since the number of independent elastic 
constants is larger, more measurements are required. 
The formulae are also more complicated than for cubic 
crystals; but by considering reflexions with simple 
indices and also special sections of reciprocal space, it 
may be possible to study one or two elastic constants 
at  a time and thus simplify the calculations. 

(b) Advantages and limitations of the new method 

An advantage of the present method over the usual 
methods is that  the crystal need not be subjected to 
any strains whatsoever. Consequently, it would be pos- 
sible to measure elastic constants of crystals for which 
the yield strength is very low. A second advantage is 
that  only a relatively small crystal is required. Although 
in the present s tudy the smallest face that  could be used 
was about 5 × 5 mm. 2 in cross-section, this size could be 
further reduced by using more intense X-ray sources. 

The authors believe tha t  it would be difficult to 
increase the accuracy of measurement of the elastic 
constants beyond + 3 %. The accuracy of ultrasonic 
methods is greater than this, but  tha t  of static methods 
is generally of the same order. Another limitation is the 
long time required for the study, and the necessity for 
having a rather elaborate equipment. However, should 
occasions arise where the usual methods are not satis- 
factory, or where a discrepancy has to be investigated, 
this new method should prove a valuable adjunct to 
those existing at present. 
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